首页> 外文OA文献 >Exact sampling for intractable probability distributions via a Bernoulli factory
【2h】

Exact sampling for intractable probability distributions via a Bernoulli factory

机译:通过伯努利对难以处理的概率分布进行精确抽样   厂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many applications in the field of statistics require Markov chain Monte Carlomethods. Determining appropriate starting values and run lengths can be bothanalytically and empirically challenging. A desire to overcome these problemshas led to the development of exact, or perfect, sampling algorithms whichconvert a Markov chain into an algorithm that produces i.i.d. samples from thestationary distribution. Unfortunately, very few of these algorithms have beendeveloped for the distributions that arise in statistical applications, whichtypically have uncountable support. Here we study an exact sampling algorithmusing a geometrically ergodic Markov chain on a general state space. Our workprovides a significant reduction to the number of input draws necessary for theBernoulli factory, which enables exact sampling via a rejection samplingapproach. We illustrate the algorithm on a univariate Metropolis-Hastingssampler and a bivariate Gibbs sampler, which provide a proof of concept andinsight into hyper-parameter selection. Finally, we illustrate the algorithm ona Bayesian version of the one-way random effects model with data from a styreneexposure study.
机译:统计领域中的许多应用都需要马尔可夫链蒙特卡洛方法。确定合适的起始值和行程长度可能会在分析和经验上带来挑战。克服这些问题的愿望导致了精确的或完美的采样算法的发展,该算法将马尔可夫链转换为产生i.i.d的算法。平稳分布的样本。不幸的是,这些算法中很少有针对统计应用中出现的分布而开发的,这些应用通常具有不可计数的支持。在这里,我们研究在一般状态空间上使用几何遍历马尔可夫链的精确采样算法。我们的工作大大减少了伯努利工厂所需的投入量,从而可以通过剔除抽样方法进行精确抽样。我们在单变量Metropolis-Hastings采样器和双变量Gibbs采样器上说明了该算法,这些算法提供了概念证明和对超参数选择的了解。最后,我们使用苯乙烯暴露研究的数据说明了单向随机效应模型的贝叶斯版本算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号